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Abstract
Using a multiple integral representation for the correlation functions, we
compute the emptiness formation probability of the XXZ spin- 1

2 Heisenberg
chain at anisotropy� = 1

2 . We prove that it is expressed in terms of the number
of alternating sign matrices.

PACS numbers: 75.10.Dg, 02.50.Cw, 05.50.+q

The Hamiltonian of the XXZ spin- 1
2 Heisenberg chain is given by

H =
M∑
m=1

(
σxmσ

x
m+1 + σymσ

y

m+1 +�
(
σ zmσ

z
m+1 − 1

))
. (1)

Here� is the anisotropy parameter,σx,y,zm denote the usual Pauli matrices acting on the quantum
space at site m of the chain. The emptiness formation probability τ (m) (the probability of
finding in the ground state a ferromagnetic string of length m) is defined as the following
expectation value:

τ (m) = 〈ψg |
m∏
k=1

1 − σ zk

2
|ψg〉 (2)

where |ψg〉 denotes the normalized ground state. In the thermodynamic limit (M → ∞), this
quantity can be expressed as a multiple integral with m integrations [1–5]. Recently, in [6], a
new multiple integral representation for τ (m) was obtained; for � = cos ζ , 0 < ζ < π , one
has

τ (m) = lim
ξ1,...,ξm→− iζ

2

τ (m, {ξj }) (3)
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where

τ (m, {ξj }) = 1

m!

∫ ∞

−∞

Zm({λ}, {ξ})∏m
a<b sinh(ξa − ξb)

detm

(
i

2ζ sinh π
ζ
(λj − ξk)

)
dmλ (4)

with

Zm({λ}, {ξ}) =
m∏
a=1

m∏
b=1

sinh(λa − ξb) sinh(λa − ξb − iζ )

sinh(λa − λb − iζ )

detm
(

−i sin ζ
sinh(λj−ξk ) sinh(λj−ξk−iζ )

)
∏m
a>b sinh(ξa − ξb)

. (5)

In this letter, we consider the particular case � = 1
2 (ζ = π/3). Recently several

interesting conjectures were obtained for the ground state of the model at this special value of
the anisotropy parameter� [7–10]. Note that the unitary transformationUH�U−1 = −H−�,
U = ∏M/2

j=1 σ
z
2j relates our Hamiltonian (1) for� = 1

2 to the case� = − 1
2 in [8]. In particular,

it was conjectured in [8] that, in this case, the emptiness formation probability is equal to

τ (m) =
(√

3

2

)3m2
m∏
k=1

	
(
k − 1

3

)
	
(
k + 1

3

)
	
(
k − 1

2

)
	
(
k + 1

2

) . (6)

The aim of this letter is to give the proof of this conjecture using representations (3)–(5). We
observe first that for ζ = π/3,

Zm({λ}, {ξ}) = (−1)
m2−m

2

2m2+m

m∏
a>b

sinh 3(ξb − ξa)

sinh(ξb − ξa) sinh(ξa − ξb)

× detm

(
1

sinh(λj − ξk) sinh(λj − ξk − iζ )

) detm
(

1
sinh(λj−ξk+ iπ

3 )

)
detm

(
1

sinh 3(λj−ξk)
) . (7)

Here we have used the identities

detn
1

sinh(xj − yk)
=
∏n
j>k sinh(xj − xk) sinh(yk − yj )∏n

j,k=1 sinh(xj − yk)
(8)

and sinh(3x) = 4 sinh(x) sinh(x + iπ/3) sinh(x − iπ/3). Substituting (7) into (4), we obtain

τ (m, {ξj }) =
(

3i

4π

)m
(−1)

m2−m
2

2m2
m!

m∏
a>b

sinh 3(ξb − ξa)

sinh(ξb − ξa)

m∏
a,b=1
a �=b

sinh−1(ξa − ξb)

×
∫ ∞

−∞
dmλ detm

(
1

sinh
(
λj − ξk + iπ

3

)
)

× detm

(
1

sinh(λj − ξk) sinh
(
λj − ξk − iπ

3

)
)
. (9)

Due to the symmetry properties of the integrand, we can replace the first determinant with
the product of its diagonal elements multiplied by m!. Then, we insert each of these diagonal
elements into the corresponding line of the second determinant. By this procedure, the
integrals over the variables λ are decoupled and we can integrate each line of the determinant
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separately. Let us set ξk = εk − iπ/6. We obtain

τ (m, {εj}) = (−1)
m2−m

2 3m2−m2
m∏
a>b

sinh 3(εb − εa)

sinh(εb − εa)

m∏
a,b=1
a �=b

1

sinh(εa − εb)

× detm

(∫ ∞

−∞

dλ

4π cosh(λ− εj ) sinh
(
λ− εk − iπ

6

)
sinh

(
λ− εk + iπ

6

)
)
. (10)

The computation of the integral over λ in (10) leads to

τ (m, {εj}) = (−1)
m2−m

2

2m2

m∏
a>b

sinh 3(εb − εa)

sinh(εb − εa)

m∏
a,b=1
a �=b

1

sinh(εa − εb)
detm

(
3 sinh εj−εk

2

sinh 3(εj−εk )
2

)
. (11)

To obtain the emptiness formation probability (2), one has to take the homogeneous limit
εj → 0. Using the fact that

lim
xj→x
yk→y

detmf (xj − yk)∏m
a>b(xa − xb)(yb − ya)

=
m−1∏
n=0

(n!)−2 detm
[
f (j+k−2)(z)

]
z = x − y (12)

we finally obtain

τ (m) = (−1)
m2−m

2 3
m2+m

2 2−m2
m−1∏
n=0

(n!)−2 detm

[
∂j+k−2

∂xj+k−2

sinh x
2

sinh 3x
2

]
x=0

. (13)

The determinant in (13) can be computed using the following identity [11]:

1∏m
j>k sinh2 β(j − k)

detm
sinhα(j + k − 1)

sinhβ(j + k − 1)
= 2m

2−m
m∏
j=1

m∏
k=1

sinh(α + β(j − k))

sinhβ(j + k − 1)
(14)

(see [11] for the proof). The determinant (13) is a particular case of (14). Indeed, we can
consider the case β = 3α, α → 0, and apply (12) for xj = αj , yk = α(1 − k). Then,

m−1∏
n=0

(n!)−2 detm

[
∂j+k−2

∂xj+k−2

sinh x
2

sinh 3x
2

]
x=0

= 3m
2−m

m∏
j=1

m∏
k=1

j − k + 1
3

j + k − 1

= (−1)
m2−m

2 3−m+m2

2

m−1∏
k=0

(3k + 1)!

(m + k)!
. (15)

Substituting these expressions into (13), we finally obtain

τ (m) =
(

1

2

)m2 m−1∏
k=0

(3k + 1)!

(m + k)!
. (16)

We observe that the quantity Am = ∏m−1
k=0 (3k + 1)!/(m + k)! is the number of alternating sign

matrices of size m [12]. Using

	(3z) = 1

2π
33z−1/2	(z)	(z + 1/3)	(z + 2/3) 	(k + 1/2) =

√
π

2k
(2k − 1)!! (17)

one can easily check the equivalence of (16) and (6). Thus (6) is proved.
The asymptotic behaviour of τ (m) form → ∞ can be evaluated using the Stirling formula

[8]:

τ (m) → c
(√

3
2

)3m2

m− 5
36 m → ∞ (18)
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with

c = exp

[∫ ∞

0

(
5e−t

36
− sinh 5t

12 sinh t
12

sinh2 t
2

)
dt

t

]
. (19)
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